

Overview

DXR is a code search and navigation tool aimed at making sense of large
projects like Firefox. It supports full-text and regex searches as well as
structural queries like “Find all the callers of this function.” Behind the
scenes, it uses trigram indices, elasticsearch, and static analysis data
collected by instrumented compilers to make searches faster and more accurate
than is possible with simple tools like grep. DXR also exposes a plugin API
through which understanding of more languages can be added.

Here’s an example of DXR running against the Firefox codebase [http://dxr.mozilla.org/]. It looks like
this:

[image: _images/screenshot.png]

Contents

	1. Welcome To The DXR Community
	1.1. Bug Reports

	1.2. Submitting Patches

	1.3. IRC

	1.4. Open Bugs

	1.5. Wiki

	2. Getting Started
	2.1. Downloading DXR

	2.2. Booting And Building

	2.3. Configuration

	2.4. Indexing

	2.5. Serving Your Index

	3. Configuration
	3.1. Sections

	3.2. Plugin Configuration

	3.3. Syntax

	4. Deployment
	4.1. Dependencies

	4.2. Configuring Elasticsearch

	4.3. Building

	4.4. Installation and Tests

	4.5. Indexing

	4.6. Serving Your Index

	4.7. Upgrading

	5. Use
	5.1. Querying

	5.2. Highlighting

	6. Development
	6.1. Architecture

	6.2. Setting Up

	6.3. Workflow

	6.4. Coding Conventions

	6.5. Testing

	6.6. Writing Plugins

	6.7. Contributing Documentation

	6.8. Troubleshooting

	7. Appendix A: Indexing Firefox
	7.1. Increase Your RAM

	7.2. Configure The Source Tree

	7.3. Bump Up Elasticsearch’s RAM

	7.4. Kick Off The Build

Back Matter

	Glossary

	Index

	Module Index

	Search Page

	Icon Credits

1. Welcome To The DXR Community

Though DXR got its start at Mozilla, it’s seen contributions from a variety of
companies and individuals around the world. We welcome contributions of code,
bug reports, and helpful feedback.

1.1. Bug Reports

Did something explode? Not act as you expected? Let us know [https://bugzilla.mozilla.org/enter_bug.cgi?product=Webtools&component=DXR].

1.2. Submitting Patches

To contribute code, just file a pull request [https://github.com/mozilla/dxr/compare/]. Include tests to double your
chances of getting it merged and qualify for a free Bundt cake. We love tests.
Bundt cake isn’t bad, either.

1.3. IRC

We hang out in the #static channel of irc.mozilla.org. Poke your head in and
say hello.

If you have questions, please address them to the public channel; don’t /msg
someone in particular. That way, more people have a chance at answering your
question, and more people can benefit from hearing the answers. We realize
that no one likes looking naive, but please be brave and set an example to
embolden the less-brave naive people. We’re a friendly bunch and will never
deride anyone for being a beginner.

1.4. Open Bugs

Looking for something to hack on? Here are…

	Our easy bugs [https://bugzilla.mozilla.org/buglist.cgi?quicksearch=whiteboard%3Aeasy%20component%3ADXR&list_id=6127603]

	All our bugs [https://bugzilla.mozilla.org/buglist.cgi?order=Importance&resolution=---&query_format=advanced&component=DXR&product=Webtools]

Before starting work on a bug, hop into the IRC channel and confirm it’s still
relevant. We try to garden our bugs, but DXR often moves faster than we can
weed.

1.5. Wiki

The wiki [https://wiki.mozilla.org/DXR] is full of roadmap documents,
sketches toward future features, and bikeshedding sessions. Feel free to
scribble on it.

2. Getting Started

Note

These instructions are for trying out DXR to see if you like it. If you
plan to contribute code to DXR itself, please see Development
instead.

The easiest way to get DXR working on your own machine is…

	Get the source code you want to index.

	If it a language analyzed at build time (like C++ or Rust), tell DXR how to
build it.

	Run dxr index to index your code.

	Run dxr serve to present a web-based search interface.

But first, we have some installation to do.

2.1. Downloading DXR

Using git, clone the DXR repository:

git clone https://github.com/mozilla/dxr.git

2.2. Booting And Building

DXR runs only on Linux at the moment (and possibly other UNIX-like operating
systems). The easiest way to get things set up is to use the included,
preconfigured Docker setup. If you’re not running Linux on your host machine,
you’ll need a virtualization provider. We recommend VirtualBox.

After you’ve installed VirtualBox (or ignored that bit because you’re on
Linux), grab the three Docker tools you’ll need: docker, docker-compose, and,
if you’re not on Linux, docker-machine. If you’re running the homebrew package
manager on the Mac, this is as easy as…

brew install docker docker-compose docker-machine

Otherwise, visit the Docker Engine [https://docs.docker.com/engine/installation/] page for instructions.

Next, unless you’re already on Linux, you’ll need to spin up a Linux VM to
host your Docker containers:

docker-machine create --driver virtualbox --virtualbox-disk-size 50000 --virtualbox-cpu-count 2 --virtualbox-memory 512 default
eval "$(docker-machine env default)"

Feel free to adjust the resource allocation numbers above as you see fit.

Note

Next time you reboot (or run make docker_stop), you’ll need to restart
the VM:

docker-machine start default

And each time you use a new shell, you’ll need to set the environment
variables that tell Docker how to find the VM:

eval "$(docker-machine env default)"

When you’re done with DXR and want to reclaim the RAM taken by the VM,
run…

make docker_stop

Now you’re ready to fire up DXR’s Docker containers, one to run elasticsearch
and the other to interact with you, index code, and serve web requests:

make shell

This drops you at a shell prompt in the interactive container. Now you can
build DXR and run the tests to make sure it works. Type this at the prompt
within the container:

Within the docker container...
make test

2.3. Configuration

Before DXR can index your code, it needs to know where it is and, if you want
to be able to do structural queries (like find-all-the-callers) for C, C++, or
Rust, how to kick off a build. (Analysis of more dynamic languages like Python
does not require a build step.) If you have a simple build process powered by
make, a configuration like this might suffice. Place the following
in a file called dxr.config. The location of the file doesn’t matter,
but the usual place is adjacent to your source directory.

[DXR]
Some global options here, if you like

[yourproject]
source_folder = /code/my-checkout
build_command = make clean; make -j {workers}

Note

Be sure to replace the placeholder paths in the above config. You’ll need to
move your code to be indexed into the VM, either by downloading it from
within the VM, or by moving it into your DXR repository folder, where
it will be visible from within the VM in the shared ~/dxr folder. It’s
possible to index your code from a folder within ~/dxr, but, if you are
using a non-Linux host machine, moving it to /code will give you
much faster IO by taking VirtualBox’s shared-folder machinery out of the mix.

By building your project with clang and under the control of
dxr index, DXR gets a chance to interpose a custom compiler
plugin that emits analysis data. It then processes that into an index.

If you have a non-C++ project and simply want to index it as text, the
build_command can be set to blank:

build_command =

Though you shouldn’t need any of them yet, further config directives are
described in Configuration.

2.4. Indexing

Now that you’ve told DXR about your codebase, it’s time to build an
index:

dxr index --config dxr.config

Note

If you have a large codebase, the VM might run out of RAM. If that happens,
wipe out the VM using docker-machine rm default, and then go back to
the docker-machine create instruction and crank up the numbers. For
example, this is plenty of space to build Firefox:

docker-machine create --driver virtualbox --virtualbox-disk-size 50000 --virtualbox-cpu-count 4 --virtualbox-memory 8000 default

Reset your shell variables:
eval "$(docker-machine env default)"

And drop back into the DXR container:
make shell

Note

If you have trouble getting your own code to index, step back and see if
you can get one of the included test cases to work:

cd ~/dxr/tests/test_basic
dxr index

If that works, it’s just a matter of getting your configuration right. Pop
into #static on irc.mozilla.org if you need a hand.

2.5. Serving Your Index

Congratulations; your index is built! Now, spin up DXR’s development server,
and see what you’ve wrought:

dxr serve --all

If you’re using docker-machine, run docker-machine ip default to find
the address of your VM. Then surf to http://that IP address:8000/ from the
host machine, and poke around your fancy new searchable codebase.

If you’re not using docker-machine, your code should be accessible from
http://localhost:8000/.

3. Configuration

DXR learns how to index and serve your source trees by means of an ini-formatted
configuration file:

[DXR]
Some global options here, if you like

[yourproject]
source_folder = /code/my-checkout
build_command = make clean; make -j {workers}

When you invoke dxr index, it defaults to reading dxr.config
in the current directory:

dxr index

Or you can pass in a config file explicitly:

dxr index --config /some/place/dxr.config

3.1. Sections

The configuration file is divided into sections. The [DXR] section holds
global options; each other section describes a tree to be indexed.

You can use all the fancy interpolation features of Python’s
ConfigParser [http://docs.python.org/library/configparser.html] class to
save repetition.

3.1.1. [DXR] Section

Here are the options that can live in the [DXR] section. For options
representing path names, relative paths are relative to the directory
containing the config file.

	disabled_plugins

	Names of plugins to disable. Default: empty

	enabled_plugins

	Names of plugins to enable. Default: *

	es_alias

	A format()-style template for coming up with elasticsearch alias
names. These live in the same namespace as indices, so don’t pave over any
index name you’re already using. The variables {format} and {tree}
will be substituted, and their meanings are as in es_index. Default:
dxr_{format}_{tree}.

	es_index

	A format()-style template for coming up with elasticsearch index
names. The variable {tree} will be replaced with the tree name,
{format} will be replaced with the format version, and {unique}
will be replaced with a unique ID to keep a tree’s new index from
colliding with the old one. The unique ID includes a random number and the
build hosts’s MAC address so errant concurrent builds on different hosts
at least won’t clobber each other. Default: dxr_{format}_{tree}_{unique}

	es_catalog_replicas

	The number of elasticsearch replicas to make of the catalog index.
This is read often and written only when an indexing run completes, so
crank it up so there’s a replica on every node for best performance. But
remember that writes will hang if at least half of the attempted copies
aren’t available. Default: 1

	es_indexing_timeout

	The number of seconds DXR should wait for elasticsearch responses during
indexing. Default: 60

	es_indexing_retries

	How many other ES nodes to try if a query to one during indexing times out
or the connection fails. This is an experimental feature. Default: 0

	es_refresh_interval

	The number of seconds between elasticsearch’s consolidation passes during
indexing. Set to -1 to do no refreshes at all, except directly after an
indexing run completes. Default: 60

	generated_date

	The “generated on” date stamped at the bottom of every DXR web page, in
RFC-822 (also known as RFC 2822) format. Default: the time the indexing run
started

	log_folder

	A format()-style template for deciding where to store log files
written while indexing. The token {tree} will be replaced with the name
of the tree being indexed. Default: dxr-logs-{tree} (in the current
working directory).

	skip_stages

	Build/indexing/clean stages to skip, for debugging: build, index,
clean, or any combination, whitespace-separated Either of build or
index implies clean. Default: none

	temp_folder

	A format()-style template for deciding where to store temporary files
used while indexing. The token {tree} will be replaced with the name
of each tree you index. Default: dxr-temp-{tree}. It’s a good idea to
keep this out of /tmp if it’s on a small partition, since it can
grow to tens of gigabytes on a large codebase.

	workers

	Number of concurrent processes to use for building and indexing projects.
Default: the number of CPUs on the system. Set to 0 to use no worker
processes and do everything in the master process. This is handy for
debugging.

3.1.1.1. Web App Options That Need a Restart

These options are used by the DXR web app (though some are used at index time
as well). They are not frozen into the catalog index but rather are
read when the web app starts up. Thus, the web app must be restarted to see
new values of these.

	default_tree

	The tree to redirect to when you visit the root of the site. Default: the
first tree in the config file

	es_hosts

	A whitespace-delimited list of elasticsearch nodes to talk to. Be sure to
include port numbers. Default: http://127.0.0.1:9200/. Remember that you
can split whitespace-containing things across lines in an ini file by
leading with spaces.

	es_catalog_index

	The name to use for the catalog index. You probably don’t need to
change this unless you want multiple otherwise-independent DXR
deployments, with disjoint Switch Tree menus, sharing the same ES
cluster. Default: dxr_catalog.

	google_analytics_key

	Google analytics key. If set, the analytics snippet will added
automatically to every page.

	max_thumbnail_size

	The file size in bytes at which images will not be used for their icon
previews on folder browsing pages. Default: 20000.

	www_root

	URL path prefix to the root of DXR’s web app. Example: /smoo. Default:
empty.

3.1.2. Tree Sections

Any section not named [DXR] represents a tree to be indexed. Changes to
per-tree options take effect when the tree is next indexed.

	build_command

	Command for building your source code. Default: make -j {workers}.
This is run within object_folder. Note that {workers} will be
replaced with workers from the [DXR] section (though 1 if
workers is set to 0).

	clean_command

	Command for deleting the build products of build_command, restoring
things to the pre-built state. Default: make clean. This is run within
object_folder.

	disabled_plugins

	Plugins disabled in this tree, in addition to ones already disabled in the
[DXR] section. Default: *

	enabled_plugins

	Plugins enabled in this tree. Default: *, which enables the same
plugins enabled in the [DXR] section.

	es_shards

	The number of shards to break the elasticsearch index into. Default: 5

	ignore_patterns

	Whitespace-separated list of Unix shell-style [http://docs.python.org/library/fnmatch.html] file names or paths to
ignore. Paths start with a slash, and file names don’t. Patterns
containing whitespace can be expressed by enclosing them in double quotes:
"Lovely readable name.human".

	object_folder

	Folder where the build_command will be run. This is generally the
folder where object files will be stored. Default: same as
source_folder

	source_folder

	The folder containing the source code to index. Required.

	source_encoding

	The Unicode encoding of the tree’s source files. Default: utf-8

	temp_folder

	A format()-style template for deciding where to store temporary files
used while indexing. The token {tree} will be replaced with the name
of each tree you index. Default: temp_folder setting from [DXR]
section. You generally don’t need to set this.

	p4web_url

	The URL to the root of a p4web installation. Default: http://p4web/

	workers

	Number of concurrent processes to use for building and indexing this tree.
Default: workers setting from [DXR] section. You might want to set
this lower for a tree that uses memory-hungry plugins if you’re low on RAM.

3.2. Plugin Configuration

Plugin-specific options go in [[double-bracketed]] sections under trees.
For example…

[some-tree]

 [[buglink]]
 url = http://www.example.com/
 name = Example bug tracker

Currently, changes to plugin configuration take effect at index time or after
restarting the web app; none are picked up by the web app in realtime.

See Writing Plugins for more details on plugin development.

3.2.1. [[buglink]]

	name

	Name of the tree’s bug tracker installation, e.g. Mozilla's Bugzilla

	regex

	Regex for finding bug references to link in the source code. Default:
(?i)bug\s+#?([0-9]+), which catches things like “bug 123456”

	url

	URL pattern for building links to tickets. %s will be replaced with the
ticket number. The option should include the URL scheme.

3.2.2. [[python]]

	python_path

	Path to the folder from which the codebase imports Python modules

3.2.3. [[xpidl]]

	header_path

	Path to the folder where generated .h headers will be placed, used for
URL construction.

	include_folders

	Whitespace-separated list of paths to search in to resolve include
directives. Default: [] (current folder)

3.3. Syntax

comments out the remainder of its line in most cases. To express a config
value that contains #, place it in triple quotes:

regex = '''(?i)bug\s+\#?([0-9]+)'''
regex = """(?i)bug\s+\#?([0-9]+)"""

A single surrounding pair of single or double quotes will end up as part of the
value at the moment, due to an apparent bug in configobj [https://github.com/DiffSK/configobj/issues/97].

4. Deployment

Note

The best deployment story probably involves Docker and our setup scripts in
tooling/docker/dev/. However, we haven’t got that quite figured out
yet. Feel free to chip in! In the meantime, enjoy this page about manually
installing DXR on bare metal.

Once you decide to put DXR into production for use by multiple people, it’s
time to move beyond the Getting Started instructions. You likely need
a real elasticsearch cluster, and you definitely need a robust web server like
Apache. This chapter helps you deploy DXR on the Linux machines 1 of your
choice and configure them to handle multi-user traffic volumes.

DXR generates an elasticsearch-dwelling index for one or more source
trees as a batch process. This is well suited to a dedicated build server. One
or more web servers then serve pages based on it.

	1

	DXR might also work with other UNIX-like operating systems, but we make no promises.

4.1. Dependencies

4.1.1. OS Packages

You’ll need to install several packages on both your build and web servers.
These are the Ubuntu package names, but they should be clear enough to map to
their equivalents on other distributions:

	make

	build-essential

	libclang-dev (clang dev headers). Version 3.5 is recommended, though we
theoretically support back to 3.2.

	llvm-dev (LLVM dev headers, version 3.5 recommended)

	pkg-config

	npm; node 6.0.0 or higher

	openjdk-7-jdk

	elasticsearch 1.1 or higher. The elasticsearch corporation maintains its own
packages; they aren’t often found in distros. Newer is better, though I tend
to avoid x.0 releases.

Technically, you could probably do without most of these on the web server,
though you’d then need to build DXR itself on a different machine and transfer
it over.

Note

On some systems (for example Debian and Ubuntu) the Node.js interpreter is
named nodejs, but DXR expects it to be named node. One
simple solution is to add a symlink:

sudo ln -s /usr/bin/nodejs /usr/bin/node

Note

The list of packages above is maintained by hand and might fall behind,
despite our best efforts. If you suspect something is missing, look at
tooling/docker/dev/set_up_ubuntu.sh in the DXR source tree, which
does the actual setup of the included container and is automatically
tested.

4.1.2. Additional Installation

You’ll need to install the JavaScript plugin for elasticsearch on your
elasticsearch server (regardless of what type of code you’re indexing). The
plugin version you need depends on your version of elasticsearch (see
https://github.com/elastic/elasticsearch-lang-javascript). See
tooling/docker/es/Dockerfile for the command currently being used to
install the plugin in our container, something like:

sudo /usr/share/elasticsearch/bin/plugin --install elasticsearch/elasticsearch-lang-javascript/<version>

where you’ll need to insert the appropriate <version>.

(The JavaScript plugin can be uninstalled with sudo
/usr/share/elasticsearch/bin/plugin remove lang-javascript.)

To get all of the DXR tests to pass, or if you’re indexing rust code, you’ll
also need to install rust. Refer to
tooling/docker/dev/set_up_common.sh for the currently recommended
install command, something like:

curl -s https://static.rust-lang.org/rustup.sh | sh -s -- --channel=nightly --date=<date> --yes

Note

The 2015-06-14 version of rust has a bug on Fedora-based systems - see
https://github.com/rust-lang/rust/issues/15684 for a fix if you’re
seeing shared library errors during rust compiles.

(Rust can be uninstalled with sudo /usr/local/lib/rustlib/uninstall.sh.)

4.1.3. Python Packages

You’ll also need several third-party Python packages. In order to isolate the
specific versions we need from the rest of the system, use Virtualenv [https://virtualenv.pypa.io/en/latest/]:

virtualenv dxr_venv # Create a new virtual environment.
source dxr_venv/bin/activate

You’ll need to repeat that activate command each time you want to
use DXR from a new shell.

4.2. Configuring Elasticsearch

Elasticsearch is the data store shared between the build and web servers.
Obviously, they both need network access to it. ES tuning is a complex art,
but these pointers should start you off with reasonable performance:

	Give ES its own server. It loves RAM and IO speed. If you want high
availability or need more power than one machine can provide, set up a
cluster.

	Configure the following in /etc/elasticsearch/elasticsearch.yml:

	Set bootstrap.mlockall to true. You don’t want any swapping.

	Set script.disable_dynamic to false. This enables DXR’s use of the
JavaScript plugin.

	Whether you intend to set up a cluster or not, beware that ES makes friends
all too easily. Be sure to change the cluster.name to something unusual
and disable autodiscovery by setting
discovery.zen.ping.multicast.enabled to false, instead specifying
your cluster members directly in discovery.zen.ping.unicast.hosts.

	And set the following in /etc/default/elasticsearch (for debian-based
systems) or /etc/sysconfig/elasticsearch (for RPM-based
distributions):

	Crank up your kernel’s max file descriptors:

MAX_OPEN_FILES=65535
MAX_LOCKED_MEMORY=unlimited

	Set ES_HEAP_SIZE to half of your system RAM, not exceeding 32GB
(because at that point the JVM can no longer use compressed
pointers). Giving it one big chunk of RAM up front will avoid heap
fragmentation and costly reallocations. The remaining memory will easily be
filled by the OS’s file cache as it tussles with Lucene indices.

	If you have storage constraints, you may want to set DATA_DIR and
LOG_DIR to control where elasticsearch puts its data and logs; the
defaults are /var/lib/elasticsearch and
/var/log/elasticsearch. Elasticsearch doesn’t require much log
space…until things go wrong.

	It is often recommended to use Oracle’s JVM, but OpenJDK works fine.

DXR will create one index per indexed tree per format version.
Reindexing a tree automatically replaces the old index with the new one as its
last step. This happens atomically. Be sure there’s enough space on the
cluster to hold both the old and new indices at once during indexing.

4.3. Building

First, arrange for the correct versions of llvm-config,
clang, and clang++ to be available under those names,
whether by a mechanism like Debian’s alternatives system or with symlinks.

Then, activate the Python virtualenv you made above if you haven’t already in
your current login session:

source dxr_venv/bin/activate

Next, build DXR from its top-level directory:

make

It will build libclang-index-plugin.so in dxr/plugins/clang,
compile the JavaScript-based templates, cache-bust the static assets, and
install the Python dependencies.

4.4. Installation and Tests

Once you’ve built it, install DXR in the activated virtualenv:

pip install --no-deps .

Note

If you intend to develop DXR itself, run pip install --no-deps -e .
instead. Otherwise, pip will make a copy of the code, severing its
relationship with the source checkout.

To ensure everything has built correctly and that elasticsearch and other
dependencies are installed and running correctly, you can run the tests. Make
sure elasticsearch is started first, of course.

make test

4.5. Indexing

Now that we’ve got DXR installed on both the build and web machines, let’s talk
about just the build server for a moment.

As in Getting Started, copy your projects’ source trees to the build
server, and create a config file. (See Configuration for details.) Then,
kick off the indexing process:

dxr index --config dxr.config

Note

You can also append one or more tree names to index just those trees. This
is useful for parallelization across multiple build servers.

Generally, you use something like cron or Jenkins to repeat indexing on a
schedule or in response to source-tree changes.

4.6. Serving Your Index

Now let’s set up the web server. Here we have some alternatives.

4.6.1. dxr serve

dxr serve runs a tiny web server for publishing an index. Though it
is underpowered for production use, it can come in handy for testing that the
index was built properly and DXR’s dependencies are installed:

dxr serve

Then visit http://localhost:8000/.

4.6.2. Apache and mod_wsgi

DXR is also a WSGI application and can be deployed on Apache with mod_wsgi [https://code.google.com/p/modwsgi/], on
uWSGI [http://projects.unbit.it/uwsgi/], or on any other web server that supports the WSGI protocol.

The main mod_wsgi directive is WSGIScriptAlias [https://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGIScriptAlias], and the DXR WSGI application
is defined in dxr/wsgi.py, so an example Apache directive might look
something like this:

WSGIScriptAlias / /path/to/dxr/dxr/wsgi.py

You must also specify the path to the config file. This is done with the
DXR_CONFIG environment variable. For example, add this to your Apache
configuration:

SetEnv DXR_CONFIG /path/to/dxr.config

Because we used virtualenv to install DXR’s runtime dependencies, add the path
to the virtualenv to your Apache configuration as well:

WSGIPythonHome /path/to/dxr_venv

Note that the WSGIPythonHome [https://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGIPythonHome] directive is allowed only in the server config
context, not in the virtual host context. It’s analogous to running
virtualenv’s activate command.

Finally, make sure mod_wsgi is installed and enabled. Then, restart Apache:

sudo service apache2 stop
sudo service apache2 start

Note

Changes to /etc/apache2/envvars don’t take effect if you run only
sudo service apache2 restart.

Additional configuration might be required, depending on your version
of Apache, your other Apache configuration, and where DXR is
installed. For example, if you can’t access your DXR index and your
Apache error log contains lines like client denied by server
configuration: /path/to/dxr/dxr/wsgi.py, try adding this to your
Apache configuration:

<Directory /path/to/dxr/dxr>
 Require all granted
</Directory>

Here is a complete example config, for reference:

WSGIPythonHome /home/dxr/dxr/venv
<VirtualHost *:80>
 # Serve static resources, like CSS and images, with plain Apache:
 Alias /static/ /home/dxr/dxr/dxr/static/

 # Tell DXR where its config file is:
 SetEnv DXR_CONFIG /home/dxr/dxr/tests/test_basic/dxr.config

 WSGIScriptAlias / /usr/local/lib/python2.7/site-packages/dxr/dxr.wsgi
</VirtualHost>

4.6.3. uWSGI

uWSGI [http://projects.unbit.it/uwsgi/] is the new hotness and well worth considering. The first person to
deploy DXR under uWSGI should document it here.

4.7. Upgrading

To update to a new version of DXR…

	Update your DXR clone:

git pull origin master

	Delete your old virtual env:

rm -rf /path/to/dxr_venv

	Repeat these parts of the installation:

	Python Packages

	Building

	Installation and Tests

5. Use

5.1. Querying

DXR queries are almost entirely text-based. In addition to being fast to input
for experienced users, having an all-text representation invites handy tricks
like Firefox keyword bookmarks [http://kb.mozillazine.org/Using_keyword_searches].

A DXR query is a series of space-delimited terms:

	Filtered terms are structured as <filter name>:<argument>:

	callers:frobulate

	var:num_caribou

Everything but plain text search is done using filtered terms.

	Text terms are just bare text and do simple substring matching:

	hello

	three independent words

All terms, filtered or not, are ANDed together, and lines matching all of them
are returned as results.

5.1.1. Quoting

Single and double quotes can be used in filter arguments and in text terms to
help express literal spaces and other oddities. Singles can contain doubles,
doubles can contain singles, and each kind can contain itself if
backslash-escaped:

	A phrase with a space: "Hello, world"

	Quotes in a plain text search, taken as literals since they’re not leading:
id="whatShouldIDoContent"

	Double quotes inside single quotes, as a filter argument:
regexp:'"wh(at|y)'

	Backslash escaping: "I don't \"believe\" in fairies."

5.2. Highlighting

Source code views support highlighting lines, runs of lines, and even multiple
runs of lines at once.

There are four ways to highlight. Each updates the hash portion of the URL so
the highlighted regions are maintained when a page is bookmarked or shared via
chat, bug reports, etc.

	single click

	Single-click a line to select it. Click it again to deselect it.
Single-clicking a line will also deselect all other lines.

	single click then shift-click

	After selecting a single line, hold Shift, and click a line above or below
it to highlight the entire range between.

	control- or command-click

	Hold Control or Command (depending on your OS) while clicking a line to add
it to the set of already highlighted lines. Do it again to deselect it.

	control- or command-click, then shift-click

	After selecting one or more lines, use Control- or Command-Click to
highlight the first in a new range of lines. Then, Shift-click, and the
second range will be added to the existing highlighted set.

6. Development

6.1. Architecture

[image: _images/block-diagram.png]
DXR divides into 2 halves, with stored indices in the middle:

	The indexer, run via dxr index, is a batch job which analyzes
code and builds indices in elasticsearch, one per tree, plus a
catalog index that keeps track of them. The indexer hosts various
plugins which handle everything from syntax coloring to static analysis.

Generally, the indexer is kicked off asynchronously—often even on a separate
machine—by cron or a build system. It’s up to deployers to come up with
strategies that make sense for them.

	The second half is a Flask web application which lets users run queries.
dxr serve runs a toy instance of the application for development
purposes; a more robust method should be used for Deployment.

6.1.1. How Indexing Works

We store every line of source code as an elasticsearch document of type
line (hereafter called a “LINE doc” after the name of the constant used in
the code). This lends itself to the per-line search results DXR delivers. In
addition to the text of the line, indexed into trigrams for fast substring and
regex search, a LINE doc contains some structural data.

	First are needles, search targets that structural queries
can hunt for. For example, if we indexed the following Python source code,
the indicated (simplified) needles might be attached:

def frob(): # py-function: frob
 nic(ate()) # py-callers: [nic, ate]

If the user runs the query function:frob, we look for LINE docs with
“frob” in their “py-function” properties. If the user runs the query
callers:nic, we look for docs with “py-callers” properties containing
“nic”.

These needles are offered up by plugins via the
needles_by_line() API. For the sake of
sanity, we’ve settled on the convention of a language prefix for
language-specific needles. However, the names are technically arbitrary,
since the plugin emitting the needle is also its consumer, through the
implementation of a Filter.

	Also attached to a LINE doc are offsets/metadata pairs that attach CSS
classes and contextual menus to various spans of the line. These also come
out of plugins, via refs() and
regions(). Views of entire source-code files
are rendered by stitching multiple LINE docs together.

The other major kind of entity is the FILE doc. These support directory
listings and the storage of per-file rendering data like navigation-pane
entries (given by links()) or image contents.
FILE docs may also contain needles, supporting searches like ext:cpp which
return entire files rather than lines. Plugins provide these needles via
needles().

6.2. Setting Up

Here is the fastest way to get hacking on DXR.

6.2.1. Downloading DXR

Using git, clone the DXR repository:

git clone https://github.com/mozilla/dxr.git

6.2.2. Booting And Building

DXR runs only on Linux at the moment (and possibly other UNIX-like operating
systems). The easiest way to get things set up is to use the included,
preconfigured Docker setup. If you’re not running Linux on your host machine,
you’ll need a virtualization provider. We recommend VirtualBox.

After you’ve installed VirtualBox (or ignored that bit because you’re on
Linux), grab the three Docker tools you’ll need: docker, docker-compose, and,
if you’re not on Linux, docker-machine. If you’re running the homebrew package
manager on the Mac, this is as easy as…

brew install docker docker-compose docker-machine

Otherwise, visit the Docker Engine [https://docs.docker.com/engine/installation/] page for instructions.

Next, unless you’re already on Linux, you’ll need to spin up a Linux VM to
host your Docker containers:

docker-machine create --driver virtualbox --virtualbox-disk-size 50000 --virtualbox-cpu-count 2 --virtualbox-memory 512 default
eval "$(docker-machine env default)"

Feel free to adjust the resource allocation numbers above as you see fit.

Note

Next time you reboot (or run make docker_stop), you’ll need to restart
the VM:

docker-machine start default

And each time you use a new shell, you’ll need to set the environment
variables that tell Docker how to find the VM:

eval "$(docker-machine env default)"

When you’re done with DXR and want to reclaim the RAM taken by the VM,
run…

make docker_stop

Now you’re ready to fire up DXR’s Docker containers, one to run elasticsearch
and the other to interact with you, index code, and serve web requests:

make shell

This drops you at a shell prompt in the interactive container. Now you can
build DXR and run the tests to make sure it works. Type this at the prompt
within the container:

Within the docker container...
make test

6.2.3. Running A Test Index

The folder-based test cases make decent workspaces for development, suitable
for manually trying out your changes. test_basic is a good one to start
with. To get it running…

cd ~/dxr/tests/test_basic
dxr index
dxr serve -a

If you’re using docker-machine, run docker-machine ip default to find
the address of your VM. Then surf to http://that IP address:8000/ from the
host machine, and explore the index. If you’re not using docker-machine,
the index should be accessible from http://localhost:8000/.

When you’re done, stop the server with Control-C.

6.3. Workflow

The repository on your host machine is mirrored over to the interactive
container via Docker volume mounting. Changes you make in the DXR repository on
your host machine will be instantly available within /home/dxr/dxr on the
container and vice versa, so you can edit using your usual tools on the host
and still use the container to run DXR.

After making changes to DXR, a build step is sometimes needed to see the
effects of your work:

	Changes to C++ code or to HTML templates in the nunjucks folder:

	make (at the root of the project)

	Changes to the format of the elasticsearch index:

	Re-run dxr index inside your test folder (e.g.,
tests/test_basic). Before committing, you should increment the
format version.

Stop dxr serve, run any applicable build steps, and then fire up
the server again. If you’re changing Python code that runs only at request
time, you shouldn’t need to do anything; dxr serve will notice
and restart itself a few seconds after you save.

6.4. Coding Conventions

Follow PEP 8 [http://www.python.org/dev/peps/pep-0008/] for Python code, but don’t sweat the line length too much.
Follow PEP 257 [http://www.python.org/dev/peps/pep-0257/] for docstrings, and use Sphinx-style argument documentation.
Single quotes are preferred for strings; use 3 double quotes for docstrings and
multiline strings or if the string contains a single quote.

6.5. Testing

DXR has a fairly mature automated testing framework, and all server-side
patches should come with tests. (Tests for client-side contributions are
welcome as well, but we haven’t got the harness set up yet.)

6.5.1. Writing Tests for DXR

DXR supports two kinds of integration tests:

	A lightweight sort with a single file worth of analyzed code. This kind
stores the code as a Python string within a subclass of
SingleFileTestCase. At test time, it instantiates the file on
disk in a temp folder, builds it, and makes assertions about it. If
the stop_for_interaction class variable is falsy (the default), it
then deletes the index. If you want to browse the instance manually for
troubleshooting, set this to True.

	A heavier sort of test: a folder containing one or more source trees and a
DXR config file. These are useful for tests that require a multi-file tree
to analyze or more than one tree. test_ignores is an example. Within
these folders are also one or more Python files containing subclasses of
DxrInstanceTestCase which express the actual tests. These trees can be
built like any other using dxr index, in case you want to do manual
exploration.

6.5.2. Running the Tests

To run all the tests, run this from the root of the DXR repository (in the
container):

make test

To run just the tests in tests/test_functions.py…

nosetests tests/test_functions.py

To run just the tests from a single class…

nosetests tests/test_functions.py:ReferenceTests

To run a single test…

nosetests tests/test_functions.py:ReferenceTests.test_functions

If you have trouble, make sure you didn’t mistranscribe any colons or
periods.

To omit the often distracting elasticsearch logs that nose typically presents
when a test fails, add the --nologcapture flag.

6.6. Writing Plugins

Plugins are the way to add new types of analysis, indexing, searching, or
display to DXR. In fact, even DXR’s basic capabilities, such as text search
and syntax coloring, are implemented as plugins. Want to add support for a new
language? A new kind of search to an existing language? A new kind of
contextual menu cross-reference? You’re in the right place.

At the top level, a Plugin class binds together a
collection of subcomponents which do the actual work:

[image: digraph plugin { "Plugin" -> "FolderToIndex"; "Plugin" -> "TreeToIndex" -> "FileToIndex"; "Plugin" -> "FileToSkim"; "Plugin" -> "filters"; "Plugin" -> "mappings"; "Plugin" -> "analyzers"; }]

6.6.1. Registration

A Plugin class is registered via a setuptools entry point [https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins] called dxr.plugins. For example, here are the
registrations for the built-in plugins, from DXR’s own setup.py:

entry_points={'dxr.plugins': ['urllink = dxr.plugins.urllink',
 'buglink = dxr.plugins.buglink',
 'clang = dxr.plugins.clang',
 'omniglot = dxr.plugins.omniglot',
 'pygmentize = dxr.plugins.pygmentize']},

The keys in the key/value pairs, like “urllink” and “buglink”, are the strings
the deployer can use in the enabled_plugins config directive to turn them
on or off. The values, like “dxr.plugins.urllink”, can point to either…

	A Plugin class which itself points to filters,
skimmers, indexers, and such. This is the explicit approach—more lines of
code, more opportunities to buck convention—and thus not recommended in
most cases. The Plugin class itself is just a dumb
bag of attributes whose only purpose is to bind together a collection of
subcomponents that should be used together.

	Alternatively, an entry point value can point to a module which contains
the subcomponents of the plugin, each conforming to a naming convention by
which it can be automatically found. This method saves boilerplate and
should be used unless there is a compelling need otherwise. Behind the
scenes, an actual Plugin object is constructed implicitly: see
from_namespace() for details of the naming
convention.

Here is the Plugin object’s API, in case you do decide to construct one
manually:

	
class dxr.plugins.Plugin(filters=None, folder_to_index=None, tree_to_index=None, file_to_skim=None, mappings=None, analyzers=None, direct_searchers=None, refs=None, badge_colors=None, config_schema=None)

	Top-level entrypoint for DXR plugins

A Plugin is an indexer, skimmer, filter set, and other miscellany meant to
be used together; it is the deployer-visible unit of pluggability. In other
words, there is no way to subdivide a plugin via configuration; there would
be no sense running a plugin’s filters if the indexer that was supposed to
extract the requisite data never ran.

If the deployer should be able to independently enable parts of your
plugin, consider exposing those as separate plugins.

Note that Plugins may be instantiated multiple times; don’t assume
otherwise.

	Parameters

	
	filters – A list of filter classes

	folder_to_index – A FolderToIndex subclass

	tree_to_index – A TreeToIndex subclass

	file_to_skim – A FileToSkim subclass

	mappings – Additional Elasticsearch mapping definitions for all the
plugin’s elasticsearch-destined data. A dict with keys for each
doctype and values reflecting the structure described at
http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-put-mapping.html.
Since a FILE-domain query will
be promoted to a LINE query if any other query term triggers a
line-based query, it’s important to keep field names and semantics
the same between lines and files. In other words, a LINE mapping
should generally be a superset of a FILE mapping.

	analyzers – Analyzer, tokenizer, and token and char filter
definitions for the elasticsearch mappings. A dict with keys
“analyzer”, “tokenizer”, etc., following the structure outlined at
http://www.elastic.co/guide/en/elasticsearch/reference/current/analysis.html.

	direct_searchers – Functions that provide direct search
capability. Each must take a single query term of type ‘text’,
return an elasticsearch filter clause to run against LINEs, and
have a direct_search_priority attribute. Filters are tried in
order of increasing priority. Return None from a direct searcher
to skip it.

Note

A more general approach may replace direct search in the
future.

	refs – An iterable of Ref subclasses
supported by this plugin. This is used at request time, to turn
abreviated ES index data back into HTML.

	badge_colors – Mapping of Filter.lang -> color for menu badges.

	config_schema – A validation schema for this plugin’s
configuration. See https://pypi.python.org/pypi/schema/ for docs.

mappings and analyzers are recursively merged into other
plugins’ mappings and analyzers using the algorithm described at
deep_update(). This is mostly intended so you can
add additional kinds of indexing to fields defined in the core plugin
using multifields. Don’t go too crazy monkeypatching the world.

	
classmethod from_namespace(namespace)

	Construct a Plugin whose attrs are populated by naming conventions.

	Parameters

	namespace – A namespace from which to pick components

Filters are taken to be any class whose name ends in “Filter” and
doesn’t start with “_”.

Refs are taken to be any class whose name ends in “Ref” and
doesn’t start with “_”.

The tree indexer is assumed to be called “TreeToIndex”. If there isn’t
one, one will be constructed which does nothing but delegate to the
class called FileToIndex (if there is one) when file_to_index()
is called on it.

The file skimmer is assumed to be called “FileToSkim”.

Mappings are pulled from mappings attribute and analyzers
from analyzers.

If these rules don’t suit you, you can always instantiate a Plugin
yourself.

Actual plugin functionality is implemented within file indexers, tree indexers,
folder indexers, filters, and skimmers.

6.6.2. Folder Indexers

	
class dxr.indexers.FolderToIndex(plugin_name, tree, path)

	The FolderToIndex generates needles for folders and provides an
optional list of headers to display in browse view as browse_headers.

6.6.3. Tree Indexers

	
class dxr.indexers.TreeToIndex(plugin_name, tree, vcs_cache)

	A TreeToIndex performs build environment setup and teardown and serves
as a repository for scratch data that should persist across an entire
indexing run.

Instances must be pickleable so as to make the journey to worker processes.
You might also want to keep the size down. It takes on the order of 2s for
a 150MB pickle to make its way across process boundaries, including
pickling and unpickling time. For this reason, we send the TreeToIndex once
and then have it index several files before sending it again.

	Parameters

	
	tree – The configuration of the tree to index: a TreeConfig

	vcs_cache – A VcsCache that describes any VCSes
used by this tree. May be None if tree does not contain any VCS
repositories.

	
environment(vars)

	Return environment variables to add to the build environment.

This is where the environment is commonly twiddled to activate and
parametrize compiler plugins which dump analysis data.

	Parameters

	vars – A dict of the already-set variables. You can make decisions
based on these.

You may return a new dict or scribble on vars and return it. In
either case, the returned dict is merged into those from other plugins,
with later plugins taking precedence in case of conflicting keys.

	
file_to_index(path, contents)

	Return an object that provides data about a given file.

Return an object conforming to the interface of FileToIndex,
generally a subclass of it.

	Parameters

	
	path – A path to the file to index, relative to the tree’s source
folder

	contents – What’s in the file: unicode if we managed to guess an
encoding and decode it, None otherwise

Return None if there is no indexing to do on the file.

Being a method on TreeToIndex, this can easily pass along the location
of a temp directory or other shared setup artifacts. However, beware
of passing mutable things; while the FileToIndex can mutate them,
visibility of those changes will be limited to objects in the same
worker process. Thus, a TreeToIndex-dwelling dict might be a suitable
place for a cache but unsuitable for data that can’t evaporate.

If a plugin omits a TreeToIndex class,
from_namespace() constructs one
dynamically. The method implementations of that class are inherited
from this class, with one exception: a file_to_index() method is
dynamically constructed which returns a new instance of the
FileToIndex class the plugin defines, if any.

	
post_build()

	Hook called after the tree’s build command completes

This is a good place to do any whole-program analysis, storing it on
me or on disk.

	
pre_build()

	Hook called before the tree’s build command is run

This is a good place to make a temp folder to dump said data in. You
can stash away a reference to it on me so later methods can find it.

6.6.4. File Indexers

	
class dxr.indexers.FileToIndex(path, contents, plugin_name, tree)

	A source of search and rendering data about one source file

Analyze a file or digest an analysis that happened at compile time.

	Parameters

	
	path – The (bytestring) path to the file to index, relative to the
tree’s source folder

	contents – What’s in the file: unicode if we managed to guess at an
encoding and decode it, None otherwise. Don’t return any by-line
data for None; the framework won’t have succeeded in breaking up
the file by line for display, so there will be no useful UI for
those data to support. Think more along the lines of returning
EXIF data to search by for a JPEG. For unicode, split the file into
lines using universal newlines
(dxr.utils.split_content_lines()); that’s what the rest of the
framework expects.

	tree – The TreeConfig of the tree to which
the file belongs

Initialization-time analysis results may be socked away on an instance
var. You can think of this constructor as a per-file post-build step.
You could do this in a different method, using memoization, but doing
it here makes for less code and less opportunity for error.

FileToIndex classes of plugins may take whatever constructor args they
like; it is the responsibility of their TreeToIndex objects’
file_to_index() methods to supply
them. However, the path and contents instance vars should be
initialized and have the above semantics, or a lot of the provided
convenience methods and default implementations will break.

	
needles()

	Return an iterable of key-value pairs of search data about the file
as a whole: for example, modification date or file size.

Each pair becomes an elasticsearch property and its value. If the
framework encounters multiple needles of the same key (whether coming
from the same plugin or different ones), all unique values will be
retained using an elasticsearch array.

	
needles_by_line()

	Return per-line search data for one file: for example, markers that
indicate a function called “foo” is defined on a certain line.

Yield an iterable of key-value pairs for each of a file’s lines, one
iterable per line, in order. The data might be data to search on or
data stowed away for a later realtime thing to generate refs or
regions from. In any case, each pair becomes an elasticsearch property
and its value.

If the framework encounters multiple needles of the same key on the
same line (whether coming from the same plugin or different ones), all
unique values will be retained using an elasticsearch array. Values
may be dicts, in which case common keys get merged by
append_update().

This method is not called on symlink files, to maintain the illusion
that they do not have contents, seeing as they cannot be viewed in
file browsing.

FileToIndex also has all the methods of its superclass,
FileToSkim.

6.6.4.1. Looking Inside Elasticsearch

While debugging a file indexer, it can help to see what is actually getting
into elasticsearch. For example, if you are debugging
needles_by_line(), you can see all the data
attached to each line of code (up to 1000) with this curl command:

curl -s -XGET "http://localhost:9200/dxr_10_code/line/_search?pretty&size=1000"

Be sure to replace “dxr_10_code” with the name of your DXR index. You
can see which indexes exist by running…

curl -s -XGET "http://localhost:9200/_status?pretty"

Similarly, when debugging needles(), you can
see all the data attached to files-as-a-whole with…

curl -s -XGET "http://localhost:9200/dxr_10_code/file/_search?pretty&size=1000"

6.6.5. File Skimmers

	
class dxr.indexers.FileToSkim(path, contents, plugin_name, tree, file_properties=None, line_properties=None)

	A source of rendering data about a file, generated at request time

This is appropriate for unindexed files (such as old revisions pulled out
of a VCS) or for data so large or cheap to produce that it’s a bad tradeoff
to store it in the index. An instance of me is mostly an opportunity for a
shared cache among my methods.

	Parameters

	
	path – The (bytestring) conceptual path to the file, relative to
the tree’s source folder. Such a file might not exist on disk. This
is useful mostly as a hint for syntax coloring.

	contents – What’s in the file: unicode if we knew or successfully
guessed an encoding, None otherwise. Don’t return any by-line data
for None; the framework won’t have succeeded in breaking up the
file by line for display, so there will be no useful UI for those
data to support. In fact, most skimmers won’t be be able to do
anything useful with None at all. For unicode, split the file into
lines using universal newlines
(dxr.utils.split_content_lines()); that’s what the rest of the
framework expects.

	tree – The TreeConfig of the tree to which
the file belongs

If the file is indexed, there will also be…

	Parameters

	
	file_properties – Dict of file-wide needles emitted by the indexer

	line_properties – List of per-line needle dicts emitted by the
indexer

	
absolute_path()

	Return the (bytestring) absolute path of the file to skim.

Note: in skimmers, the returned path may not exist if the source folder
moved between index and serve time.

	
annotations_by_line()

	Yield extra user-readable information about each line, hidden by
default: compiler warnings that occurred there, for example.

Yield a list of annotation maps for each line:

{'title': ..., 'class': ..., 'style': ...}

	
char_offset(row, col)

	Return the from-BOF unicode char offset for the char at the given
row and column of the file we’re indexing.

This is handy for translating row- and column-oriented input to the
format refs() and
regions() want.

	Parameters

	
	row – The 1-based line number, according to splitting in universal
newline mode

	col – The 0-based column number

	
contains_text()

	Return whether this file can be decoded and divided into lines as
text. Empty files contain text.

This may come in handy as a component of your own
is_interesting() methods.

	
is_interesting()

	Return whether it’s worthwhile to examine this file.

For example, if this class knows about how to analyze JS files, return
True only if self.path.endswith('.js'). If something falsy is
returned, the framework won’t call data-producing methods like
links(),
refs(), etc.

The default implementation selects only text files that are not symlinks.
Note: even if a plugin decides that symlinks are interesting, it should
remember that links, refs, regions and by-line annotations will not be
called because views of symlinks redirect to the original file.

	
is_link()

	Return whether the file is a symlink.

Note: symlinks are never displayed in file browsing; a request for a symlink redirects
to its target.

	
links()

	Return an iterable of links for the navigation pane:

(sort order, heading, [(icon, title, href), ...])

File views will replace any {{line}} within the href with the
last-selected line number.

	
refs()

	Provide cross references for various spans of text, accessed
through a context menu.

Yield an ordered list of extents and menu items:

(start, end, ref)

start and end are the bounds of a slice of a Unicode string
holding the contents of the file. (refs() will not be called for
binary files.)

ref is a Ref.

	
regions()

	Yield instructions for syntax coloring and other inline formatting
of code.

Yield an ordered list of extents and CSS classes (encapsulated in
Region instances):

(start, end, Region)

start and end are the bounds of a slice of a Unicode string
holding the contents of the file. (regions() will not be called
for binary files.)

	
class dxr.lines.Ref(tree, menu_data, hover=None, qualname=None, qualname_hash=None)

	Abstract superclass for a cross-reference attached to a run of text

Carries enough data to construct a context menu, highlight instances of
the same symbol, and show something informative on hover.

	Parameters

	
	menu_data – Arbitrary JSON-serializable data from which we can
construct a context menu

	hover – The contents of the <a> tag’s title attribute. (The first
one wins.)

	qualname – A hashable unique identifier for the symbol surrounded
by this ref, for highlighting

	qualname_hash – The hashed version of qualname, which you can
pass instead of qualname if you have access to the
already-hashed version

	
es()

	Return a serialization of myself to store in elasticsearch.

	
static es_to_triple(es_data, tree)

	Convert ES-dwelling ref representation to a (start, end,
Ref subclass) triple.

Return a subclass of Ref, chosen according to the ES data. Into its
attributes “menu_data”, “hover” and “qualname_hash”, copy the ES
properties of the same names, JSON-decoding “menu_data” first.

	Parameters

	
	es_data – An item from the array under the ‘refs’ key of an ES LINE
document

	tree – The TreeConfig representing the tree
from which the es_data was pulled

	
menu_items()

	Return an iterable of menu items to be attached to a ref.

Return an iterable of dicts of this form:

{
 html: the HTML to be used as the menu item itself
 href: the URL to visit when the menu item is chosen
 title: the tooltip text given on hovering over the menu item
 icon: the icon to show next to the menu item: the name of a PNG
 from the ``icons`` folder, without the .png extension
}

Typically, this pulls data out of self.menu_data.

	
opener()

	Emit the opening anchor tag for a cross reference.

Menu item text, links, and metadata are JSON-encoded and dumped into a
data attr on the tag. JS finds them there and creates a menu on click.

	
class dxr.lines.Region(css_class)

	A tag with a CSS class, wrapped around a run of text

	
classmethod es_to_triple(es_region)

	Convert ES-dwelling region representation to a (start, end,
Region) triple.

6.6.6. Filters

	
class dxr.filters.Filter(term, enabled_plugins)

	A provider of search strategy and highlighting

Filter classes, which roughly correspond to the items in the Filters
dropdown menu, tell DXR how to query the data stored in elasticsearch by
needles() and
needles_by_line(). An instance is created
for each query term whose name matches and persists through the
querying and highlighting phases.

This is an optional base class that saves code on many filters. It also
serves to document the filter API.

	Variables

	
	name – The string prefix used in a query term to activate this
filter. For example, if this were “path”, this filter would be
activated for the query term “path:foo”. Multiple filters can be
registered against a single name; they are ORed together. For example,
it is good practice for a language plugin to query against a language
specific needle (like “js-function”) but register against the more
generic “function” here. (This allows us to do language-specific
queries.)

	domain – Either LINE or FILE. LINE means this filter returns results
that point to specific lines of files; FILE means they point to files
as a whole. Default: LINE.

	description – A description of this filter for the Filters menu:
unicode or Markup (in case you want to wrap examples in <code>
tags). Of filters having the same name, the description of the first
one encountered will be used. An empty description will hide a filter
from the menu. This should probably be used only internally, by the
TextFilter.

	union_only – Whether this filter will always be ORed with others of
the same name, useful for filters where the intersection would always
be empty, such as extensions

	is_reference – Whether to include this filter in the “ref:” aggregate
filter

	is_identifier – Whether to include this filter in the “id:” aggregate
filter

This is a good place to parse the term’s arg (if it requires further
parsing) and stash it away on the instance.

	Parameters

	
	term – a query term as constructed by a QueryVisitor

	enabled_plugins – an iterable of the enabled Plugin instances,
for use by filters that build upon the filters provided by plugins

Raise BadTerm to complain to the user: for
instance, about an unparseable term.

	
filter()

	Return the ES filter clause that applies my restrictions to the
found set of lines (or files and folders, if domain is FILES).

To quietly do no filtration, return None. This would be suitable for
path:*, for example.

To do no filtration and complain to the user about it, raise
BadTerm.

We might even make this return a list of filter clauses, for things
like the RegexFilter which want a bunch of match_phrases and a script.

	
highlight_content(result)

	Return an unsorted iterable of extents that should be highlighted in
the content field of a search result.

	Parameters

	result – A mapping representing properties from a search result,
whether a file or a line. With access to all the data, you can,
for example, use the extents from a ‘c-function’ needle to inform
the highlighting of the ‘content’ field.

	
highlight_path(result)

	Return an unsorted iterable of extents that should be highlighted in
the path field of a search result.

	Parameters

	result – A mapping representing properties from a search result,
whether a file or a line. With access to all the data, you can,
for example, use the extents from a ‘c-function’ needle to inform
the highlighting of the ‘content’ field.

6.6.7. Mappings

When you’re laying down data to search upon, it’s generally not enough just to
write needles() or
needles_by_line() implementations. If you want
to search case-insensitively, for example, you’ll need elasticsearch to fold
your data to lowercase. (Don’t fall into the trap of doing this in Python; the
Lucene machinery behind ES is better at the complexities of Unicode.) The way
you express these instructions to ES is through mappings and analyzers.

ES mappings are schemas which specify type of data (string,
int, datetime, etc.) and how to index it. For example, here is an excerpt of
DXR’s core mapping, defined in the core plugin:

mappings = {
 # Following the typical ES mapping format, `mappings` is a hash keyed
 # by doctype. So far, the choices are ``LINE`` and ``FILE``.
 LINE: {
 'properties': {
 # Line number gets mapped as an integer. Default indexing is fine
 # for numbers, so we don't say anything explicitly.
 'number': {
 'type': 'integer'
 },

 # The content of the line itself gets mapped 3 different ways.
 'content': {
 # First, we store it as a string without actually putting it
 # into any ordered index structure. This is for retrieval and
 # display in search results, not for searching on:
 'type': 'string',
 'index': 'no',

 # Then, we index it in two different ways: broken into
 # trigrams (3-letter chunks) and either folded to lowercase or
 # not. This cleverness takes care of substring matching and
 # accelerates our regular expression search:
 'fields': {
 'trigrams_lower': {
 'type': 'string',
 'analyzer': 'trigramalyzer_lower'
 },
 'trigrams': {
 'type': 'string',
 'analyzer': 'trigramalyzer'
 }
 }
 }
 }
 },
 FILE: ...
}

Mappings follow exactly the same structure as required by ES’s “put mapping”
API [http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-put-mapping.html]. The choice of mapping types [http://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-types.html] is also outlined in the ES documentation.

Warning

Since a FILE-domain query will be promoted to a LINE query if any other
query term triggers a line-based query, it’s important to keep field names
and semantics the same between lines and files. In other words, a LINE
mapping should generally be a superset of a FILE mapping. Otherwise, ES
will guess mappings for the undeclared fields, and surprising search
results will likely ensue. Worse, the bad guesses will likely happen
intermittently.

6.6.7.1. The Format Version

In the top level of the dxr package (not the top of the source
checkout, mind you) lurks a file called
format. Its role is to facilitate the automatic deployment of new
versions of DXR using dxr deploy. The format file contains an
integer which represents the index format expected by
dxr serve. If a change in the code requires a mapping or semantics
change in the index, the format version must be incremented. In response, the
deployment script will wait until new indices, of the new format, have been
built before deploying the change.

If you aren’t sure whether to bump the format version, you can always build an
index using the old code, then check out the new code and try to serve the
old index with it. If it works, you’re probably safe not bumping the version.

6.6.8. Analyzers

In Mappings, we alluded to custom indexing strategies, like breaking strings
into lowercase trigrams. These strategies are called
analyzers and are the final component of a plugin. ES has
strong documentation on defining analyzers [http://www.elastic.co/guide/en/elasticsearch/reference/current/analysis.html].
Declare your analyzers (and building blocks of them, like tokenizers) in
the same format the ES documentation prescribes. For example, the analyzers
used above are defined in the core plugin as follows:

analyzers = {
 'analyzer': {
 # A lowercase trigram analyzer:
 'trigramalyzer_lower': {
 'filter': ['lowercase'],
 'tokenizer': 'trigram_tokenizer'
 },
 # And one for case-sensitive things:
 'trigramalyzer': {
 'tokenizer': 'trigram_tokenizer'
 }
 },
 'tokenizer': {
 'trigram_tokenizer': {
 'type': 'nGram',
 'min_gram': 3,
 'max_gram': 3
 # Keeps all kinds of chars by default.
 }
 }
}

6.7. Contributing Documentation

We use Read the Docs [https://docs.readthedocs.org/] for building and hosting the documentation, which uses
sphinx [http://sphinx-doc.org/] to generate HTML documentation from reStructuredText markup.

To edit documentation:

	Edit *.rst files in docs/source/ in your local checkout.
See reStructuredText primer [http://sphinx-doc.org/rest.html] for help with syntax.

	Use cd ~/dxr/docs && make html in the VM to preview the docs.

	When you’re satisfied, submit the pull request as usual.

6.8. Troubleshooting

	Why is my copy of DXR acting erratic, failing at searches, making requests for JS templates that shouldn’t exist, and just generally not appearing to be in sync with my changes?

	Did you run python setup.py install for DXR at some point? Never, ever
do that in development; use python setup.py develop instead. Otherwise,
you will end up with various files copied into your virtualenv, and your
edits to the originals will have no effect.

	How can I use pdb to debug indexing?

	In the DXR config file for the tree you’re building, add workers = 0
to the [DXR] section. That will keep DXR from spawning multiple worker
processes, something pdb doesn’t tolerate well.

	I pulled a new version of the code that’s supposed to have a new plugin (or I added one myself), but it’s acting like it doesn’t exist.

	Re-run python setup.py develop to register the new setuptools entry point.

7. Appendix A: Indexing Firefox

As both a practical example and a specific reference, here is how to tweak the
included container to build a DXR index of mozilla-central, the repository
from which Firefox is built.

7.1. Increase Your RAM

Stop your containers, and increase the RAM and disk on your docker-machine VM
(if using docker-machine). The compilation needs around 7GB. The temp files are
15GB, and the ES index and generated HTML are also on that order. It’s also a
good idea to add more virtual CPUs, up to the limit of your physical ones. On
your host machine…

make docker_stop
docker-machine rm default
docker-machine create --driver virtualbox --virtualbox-disk-size 80000 --virtualbox-cpu-count 4 --virtualbox-memory 8000 default

Reset your shell variables:
eval "$(docker-machine env default)"

And drop back into the DXR container:
make shell

7.2. Configure The Source Tree

	Put a mozilla-central checkout in /code on the VM. This is a
special, blessed folder that will not evaporate when the docker container
exits. (If you decide to put it somewhere else, be sure your choice is
reflected in dxr.config in Step 4.) You can use hg clone as
documented at https://developer.mozilla.org/en-US/docs/Simple_Firefox_build.

Note

If using docker-machine and VirtualBox, keep your source code out of
/home/dxr/dxr; VirtualBox’s sharing of that folder between host and
guest will kill your performance.

	Have the compiler include the debug code so it can be analyzed. Put this in
/code/mozilla-central/mozconfig:

ac_add_options --enable-debug
ac_add_options --disable-optimize

	Get it ready to build:

cd /code/mozilla-central
./mach bootstrap
./mach mercurial-setup

	Put this into a new dxr.config file. It doesn’t matter where it is,
but it’s a good idea to keep it outside the checkout.

[DXR]
enabled_plugins=clang pygmentize

[mozilla-central]
source_folder=/code/mozilla-central
object_folder=/code/mozilla-central/obj-x86_64-unknown-linux-gnu
build_command=cd $source_folder && ./mach clobber && make -f client.mk build MOZ_OBJDIR=$object_folder MOZ_MAKE_FLAGS="-s -j$jobs"

7.3. Bump Up Elasticsearch’s RAM

	In tooling/docker/docker-compose.yml, add an environment stanza
like this:

es:
 build: ./es
 environment:
 ES_HEAP_SIZE: 2g
 ...

	Run make docker_es.

7.4. Kick Off The Build

Within the Docker container (remember, make shell), in the folder where you
put dxr.config, run this:

dxr index

This builds your source tree and indexes it into elasticsearch. You can then
run dxr serve -a to spin up the web interface against it.

Glossary

	analyzer

	An elasticsearch indexing strategy. The design of these should be
determined by how you plan to query the fields that use them.

	catalog index

	The elasticsearch index which holds metadata about the other
elasticsearch indices, which in turn represent source trees. The
metadata includes format version and other
frozen-at-index-time information.

	filtered term

	A query term consisting of an explicit filter name and an argument,
like regexp:hi|hello or callers:frob

	format version

	A string (though usually looking like an int) signifying the index
format. It is used to control deployments: dxr deploy never
switches to a new version of the web-serving code until all indices
have been brought up to the format version it requires. The format
version is declared in dxr/format.

	index

	The collected data used to answer queries about a tree and render the
web-based UI. These are stored in elasticsearch and created by
dxr index.

	mapping

	An elasticsearch schema, declaring the type and indexing strategy for
each field

	needle

	A piece of arbitrary data attached to either an elasticsearch line
or file doc. These are searched for when doing structural queries.
Think of these as shining nuggets of information buried in the
haystack of a codebase.

	term

	A space-delimited part of a query

	text term

	A query term without an explicit filter name, interpreted as raw text
for a substring search

Icon Credits

DXR uses third-party icons from a variety of sources.

If you add an icon, please document its origin in this document. Feel free to
use existing icons, but keep in mind that they use semantic naming. So don’t
use the search icon for zoom, as we may later change the search icon from a
magnifying glass to, for example, binoculars.

From Silk

Following icons originates from
Silk [http://www.famfamfam.com/lab/icons/silk/] by Mark James,
licensed under Creative Commons Attribution 2.5 License.

	folder

	path_search

	exclude_path

	goto_folder

	page_white_find

	page_white_code

	page_white

	page_white_wrench

	buglink

	external_link

	mimetypes/php

	mimetypes/c

	mimetypes/build

	mimetypes/sh

	mimetypes/cs

	mimetypes/h

	mimetypes/css

	mimetypes/js

	mimetypes/rb

	mimetypes/txt

	mimetypes/cpp

	mimetypes/xml

	mimetypes/unknown

	mimetypes/ui

	mimetypes/conf

	mimetypes/java

	mimetypes/svg

	mimetypes/html

	mimetypes/iso

	mimetypes/vs

	mimetypes/image

	mimetypes/py (mixed with official python logo)

	mimetypes/mm (Remixed by DXR developers)

From FatCow Hosting

Following icons originates from
FatCow [http://www.fatcow.com/free-icons] by FatCow hosting,
licensed under Creative Commons Attribution 3.0 License.

From Fugue

Following icons originates from
Fugue [http://p.yusukekamiyamane.com/] by Yusuke Kamiyamane,
licensed under Creative Commons Attribution 3.0 License.

	raw

	warning

	log

	blame

	diff

	search_warning

	regexp-search

	mimetypes/diff

	mimetypes/tex

From SharpDevelop

Following icons originates from
SharpDevelop [http://www.icsharpcode.net/OpenSource/SD/] a mix of
(partially) derivative works of Yusuke Kamiyamane, modified by the
SharpDevelop team and independent works by the SharpDevelop team all
licensed under GNU LGPL.

	jump

	method

	reference

	type

	field

	macro

	members

	struct

	union

	class

	enum

From Tango Project

Following icons originates from
Tango [http://tango.freedesktop.org/] by the Tango desktop project,
released into public domain.

	search

Index

 A
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | T

A

 	
 	absolute_path() (dxr.indexers.FileToSkim method)

 	
 	analyzer

 	annotations_by_line() (dxr.indexers.FileToSkim method)

C

 	
 	catalog index

 	
 	char_offset() (dxr.indexers.FileToSkim method)

 	contains_text() (dxr.indexers.FileToSkim method)

D

 	
 	DATA_DIR

 	
 	DXR_CONFIG

E

 	
 	
 environment variable

 	DATA_DIR

 	DXR_CONFIG

 	ES_HEAP_SIZE

 	LOG_DIR

 	
 	environment() (dxr.indexers.TreeToIndex method)

 	es() (dxr.lines.Ref method)

 	ES_HEAP_SIZE

 	es_to_triple() (dxr.lines.Ref static method)

 	(dxr.lines.Region class method)

F

 	
 	file_to_index() (dxr.indexers.TreeToIndex method)

 	FileToIndex (class in dxr.indexers)

 	FileToSkim (class in dxr.indexers)

 	Filter (class in dxr.filters)

 	
 	filter() (dxr.filters.Filter method)

 	filtered term

 	FolderToIndex (class in dxr.indexers)

 	format version

 	from_namespace() (dxr.plugins.Plugin class method)

H

 	
 	highlight_content() (dxr.filters.Filter method)

 	
 	highlight_path() (dxr.filters.Filter method)

I

 	
 	index

 	
 	is_interesting() (dxr.indexers.FileToSkim method)

 	is_link() (dxr.indexers.FileToSkim method)

L

 	
 	links() (dxr.indexers.FileToSkim method)

 	
 	LOG_DIR

M

 	
 	mapping

 	
 	menu_items() (dxr.lines.Ref method)

N

 	
 	needle

 	
 	needles() (dxr.indexers.FileToIndex method)

 	needles_by_line() (dxr.indexers.FileToIndex method)

O

 	
 	opener() (dxr.lines.Ref method)

P

 	
 	Plugin (class in dxr.plugins)

 	
 	post_build() (dxr.indexers.TreeToIndex method)

 	pre_build() (dxr.indexers.TreeToIndex method)

R

 	
 	Ref (class in dxr.lines)

 	refs() (dxr.indexers.FileToSkim method)

 	
 	Region (class in dxr.lines)

 	regions() (dxr.indexers.FileToSkim method)

T

 	
 	term

 	
 	text term

 	TreeToIndex (class in dxr.indexers)

Downloading DXR

Using git, clone the DXR repository:

git clone https://github.com/mozilla/dxr.git

Booting And Building

DXR runs only on Linux at the moment (and possibly other UNIX-like operating
systems). The easiest way to get things set up is to use the included,
preconfigured Docker setup. If you’re not running Linux on your host machine,
you’ll need a virtualization provider. We recommend VirtualBox.

After you’ve installed VirtualBox (or ignored that bit because you’re on
Linux), grab the three Docker tools you’ll need: docker, docker-compose, and,
if you’re not on Linux, docker-machine. If you’re running the homebrew package
manager on the Mac, this is as easy as…

brew install docker docker-compose docker-machine

Otherwise, visit the Docker Engine [https://docs.docker.com/engine/installation/] page for instructions.

Next, unless you’re already on Linux, you’ll need to spin up a Linux VM to
host your Docker containers:

docker-machine create --driver virtualbox --virtualbox-disk-size 50000 --virtualbox-cpu-count 2 --virtualbox-memory 512 default
eval "$(docker-machine env default)"

Feel free to adjust the resource allocation numbers above as you see fit.

Note

Next time you reboot (or run make docker_stop), you’ll need to restart
the VM:

docker-machine start default

And each time you use a new shell, you’ll need to set the environment
variables that tell Docker how to find the VM:

eval "$(docker-machine env default)"

When you’re done with DXR and want to reclaim the RAM taken by the VM,
run…

make docker_stop

Now you’re ready to fire up DXR’s Docker containers, one to run elasticsearch
and the other to interact with you, index code, and serve web requests:

make shell

This drops you at a shell prompt in the interactive container. Now you can
build DXR and run the tests to make sure it works. Type this at the prompt
within the container:

Within the docker container...
make test

 [DXR]
Some global options here, if you like

[yourproject]
source_folder = /code/my-checkout
build_command = make clean; make -j {workers}

 _images/block-diagram.png
syntax
clang python ighighing other
plugin plugin i plugins
Indexer
wiites
[—
elasticsearch
indices
A
reads
Flask app
tolerates

Shiny, happy person

_static/ajax-loader.gif

_images/graphviz-e265d6fe1d3ddfeb12be14fcd028f55ef567f559.png
FolderTolndex TreeTolndex

FileTolndex

_images/screenshot.png
e ———)
O [&) regexpigreatigood)- YR . x \ & =

(&) @ oxemotaorg/mozila-centalsearchia=regexptngreatigoodicase=uve 0~ €| (B-Cooge Q) & G |
I . 1
| regexp:(great/good) Filters @ | ™ Case-sensitive
~ path: File or directory sub-path to search within. | and 2 actas shell
wildcards.
ext: Filename extension: ' ext :cpp
regexp: Regular expression. Examples: = regexp: (?1)\bs?printf
regexp: " (three|3) mice"
function: Function or method definition: ' function: foo
function-ref: Function or method references
function-decl: Function or method declaration
callers: Functions which call the given function or method:
callers:GetStringFromName
called-by: Functions or methods which are called by the given one
type: Type or class definition: | ype:Stack.
type-ref: Type or class references, uses, or instantiations

1 accessible/ src/ generic/ HyperTextAccessible-inl.h
41 // XXX: Force cache refresh until a good solution for AT emulation of user

G+ accessible / src/ html / HTMLSelectAccessible.cop
173 // CASE #1 -- great majority of the cases

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Overview

 		
 Welcome To The DXR Community

 		
 Bug Reports

 		
 Submitting Patches

 		
 IRC

 		
 Open Bugs

 		
 Wiki

 		
 Getting Started

 		
 Downloading DXR

 		
 Booting And Building

 		
 Configuration

 		
 Indexing

 		
 Serving Your Index

 		
 Configuration

 		
 Sections

 		
 [DXR] Section

 		
 Tree Sections

 		
 Plugin Configuration

 		
 [[buglink]]

 		
 [[python]]

 		
 [[xpidl]]

 		
 Syntax

 		
 Deployment

 		
 Dependencies

 		
 OS Packages

 		
 Additional Installation

 		
 Python Packages

 		
 Configuring Elasticsearch

 		
 Building

 		
 Installation and Tests

 		
 Indexing

 		
 Serving Your Index

 		
 dxr serve

 		
 Apache and mod_wsgi

 		
 uWSGI

 		
 Upgrading

 		
 Use

 		
 Querying

 		
 Quoting

 		
 Highlighting

 		
 Development

 		
 Architecture

 		
 How Indexing Works

 		
 Setting Up

 		
 Downloading DXR

 		
 Booting And Building

 		
 Running A Test Index

 		
 Workflow

 		
 Coding Conventions

 		
 Testing

 		
 Writing Tests for DXR

 		
 Running the Tests

 		
 Writing Plugins

 		
 Registration

 		
 Folder Indexers

 		
 Tree Indexers

 		
 File Indexers

 		
 File Skimmers

 		
 Filters

 		
 Mappings

 		
 Analyzers

 		
 Contributing Documentation

 		
 Troubleshooting

 		
 Appendix A: Indexing Firefox

 		
 Increase Your RAM

 		
 Configure The Source Tree

 		
 Bump Up Elasticsearch’s RAM

 		
 Kick Off The Build

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

